Menentukansuku atau bilangan selanjutnya dari suatu barisan bilangan dengan cara mengeneralisasi pola barisan sebelumnya. Suku ke empat = (23 x 2) + 1 = 47. Suku kelima = 20 : 2 = 10. Suku keenam = 10 : 2 = 5 . Tentukan angka satuan pada bilangan 3 100.
Pustaka video Haiko fans di sini kita akan mencari kaki ke-20 dari barisan aritmatika berikut merupakan 3, 8 13, kemudian 18 dan seterusnya dimana bala aritmatika adalah pasukan yang nilai setiap tungkai nya didapatkan dari kaki sebelumnya melalui penjumlahan atau pengurangan dengan suatu bilangan B di sini kita tatap Bhakti 8 – 3 + 5000000 + 5 + 5 artinya b nya adalah 5 di mana bakal mencari suku ke-20 kita akan masuk ke dalam rumus UN akan = a + n min 1 dikali dengan b u n adalah suku ke-falak nan akan kita cari a ialah U1 b adalah beda selisihnya nan tadi nan b maka sekarang kita masukkan yaitu UN akan sekufu dengan a nya yaitu 3 ditambah n min 1 x dengan 5kamu enakan = 3 ditambah ini dikalikan maka 5 n Min 5 maka UN akan = 5 falak min 2 ini yaitu rumus suku ke-falak dari sekarang kita akan cari suku ke-20 nya U20 akan = 5 x dengan 20 dikurang 25 x 20 adalah 100 – 2 maka U 20 yaitu 98 sampai jumpa di pertanyaan berikutnya Sukses nggak pernah instan. Latihan topik tidak, silakan! 12 SMA Probabilitas Terbiasa Kekongruen dan Kesebangunan Statistika Inferensia Dimensi Tiga Statistika Terlazim Limit Kemustajaban Trigonometri Turunan Kemujaraban Trigonometri 11 SMA Barisan Limit Maslahat Bani adam Integral Persamaan Lingkaran dan Racikan Dua Lingkaran Teratur Tentu Integral Parsial Induksi Matematika Program Linear Matriks Transfigurasi Fungsi Trigonometri Persamaan Trigonometri Racikan Kerucut Polinomial 10 SMA Guna Trigonometri Skalar dan vektor serta propaganda aljabar vektor Ilmu mantik Ilmu hitung Persamaan Dan Pertidaksamaan Linear Satu Variabel Wajib Pertidaksamaan Rasional Dan Irasional Satu Variabel Sistem Persamaan Linear Tiga Variabel Sistem Pertidaksamaan Dua Laur Sistem Kemiripan Linier Dua Laur Sistem Pertidaksamaan Linier Dua Variabel Tabulasi, Pertepatan, Dan Pertidaksamaan Eksponen Dan Logaritma 9 SMP Transmutasi Geometri Kesebangunan dan Kongruensi Ingat Ruang Sisi Mungkum Bilangan Bersusun Dan Rajah Akar tunggang Paralelisme Kuadrat Fungsi Kuadrat 8 SMP Teorema Phytagoras Galangan Garis Singgung Limbung Bangun Pangsa Sisi Datar Peluang Pola Bilangan Dan Pasukan Garis hidup Koordinat Cartesius Relasi Dan Faedah Persamaan Garis Verbatim Sistem Persamaan Linear Dua Plastis Spldv 7 SMP Skala Aritmetika Sosial Aplikasi Aljabar Tesmak dan Garis Sepadan Segi Empat Segitiga Statistika Bilangan Bulat Dan Pecahan Himpunan Operasi Dan Faktorisasi Bentuk Aljabar Persamaan Dan Pertidaksamaan Linear Satu Elastis 6 SD Bangun Ulas Statistika 6 Sistem Koordinat Predestinasi Melingkar Landasan 5 SD Ingat Pangsa Reklamasi dan Penyampaian Data Gerakan Ketentuan Pecahan Kecepatan Dan Tagihan Skala Perpangkatan Dan Akar 4 SD Aproksimasi / Pembulatan Sadar Melelapkan Statistika Pengukuran Sudut Ketentuan Romawi Pecahan KPK Dan FPB 12 SMA Teori Relativitas Khusus Konsep dan Fenomena Kuantum Teknologi Digital Nukleus Sendang-Sumber Energi Susunan Arus Searah Setrum Statis Elektrostatika Palagan Magnet Induksi Elektromagnetik Jalinan Sirkulasi Bolak Balik Radiasi Elektromagnetik 11 SMA Hukum Termodinamika Ciri-Ciri Gelombang Mekanik Gelombang Berjalan dan Gelombang Stasioner Gelombang elektronik Obstulen Gelombang Kilat Alat-Perabot Optik Gejala Pemanasan Global Alternatif Solusi Keseimbangan Dan Dinamika Rotasi Elastisitas Dan Hukum Hooke Zalir Statik Fluida Dinamik Master, Kalor Dan Perpindahan Panas api Teori Kinetik Tabun 10 SMA Syariat Newton Hukum Newton Mengenai Gravitasi Operasi Kerja Dan Energi Pejaka dan Impuls Getaran Harmonis Hakikat Fisika Dan Prosedur Ilmiah Pengukuran Vektor Gerak Lurus Gerak Parabola Gerak Melingkar 9 SMP Kelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk Teknologi Komoditas Teknologi Sifat Bahan Kelistrikan Dan Teknologi Elektrik Di Lingkungan 8 SMP Tekanan Cerah Getaran dan Gelombang listrik Gerak Dan Kecondongan Pesawat Sederhana 7 SMP Tata Rawi Sasaran Ilmu Siaran Alam Dan Pengamatannya Zat Dan Karakteristiknya Suhu Dan Kalor Energi Fisika Geografi 12 SMA Struktur, Nomenklatur, Sifat, Isomer, Identifikasi, dan Kegunaan Senyawa Benzena dan Turunannya Struktur, Pengelolaan Nama, Sifat, Penggunaan, dan Penggolongan Makromolekul Sifat Koligatif Cairan Reaksi Redoks Dan Kamp Elektrokimia Kimia Molekul 11 SMA Asam dan Basa Kesetimbangan Ion dan pH Larutan Garam Enceran Penyangga Titrasi Kesetimbangan Larutan Ksp Sistem Koloid Kimia Terapan Senyawa Hidrokarbon Patra Manjapada Termokimia Laju Reaksi Kesetimbangan Kimia Dan Pergeseran Kesetimbangan 10 SMA Enceran Elektrolit dan Larutan Non-Elektrolit Reaksi Reduksi dan Oksidasi serta Tata Nama Campuran Hukum-Hukum Dasar Kimia dan Stoikiometri Metode Ilmiah, Hakikat Ilmu Kimia, Keselamatan Dan Keamanan Kimia Di Laboratorium, Serta Peran Kimia Dalam Umur Struktur Atom Dan Grafik Periodik Ikatan Ilmu pisah, Bentuk Molekul, Dan Interaksi Antarmolekul Source
\n \n cara mencari suku ke 20
Diketahuisuku pertama dari barisan geometri adalah 5/2 dan suku ke-4 adalah 20. Top 9: Latihan Soal dan Pembahasan Barisan dan Deret Geometri Bagian 1 Maka suku ke-8 adalah 256.PendahuluanPola bilangan ganjil, contohnya : 1, 3, 5, 7, Rumus menentukan suku ke-n pada pola bilangan ganjil⇒ Uₙ = 2n - 1_____Pola bilangan genap
Unduh PDF Unduh PDF Deret aritmetik adalah deretan angka yang masing-masing sukunya meningkat dalam jumlah konstan. Untuk menjumlahkan angka-angka dalam deret aritmetik, Anda cukup menambahkan setiap angkanya. Namun, ketika banyaknya angka dalam deret terlalu besar, cara tersebut menjadi tidak praktis. Sebaiknya, Anda mencari jumlah deret aritmetik dengan mengalikan rata-rata dari suku pertama dan terakhir dan membagikannya dengan banyaknya suku dalam deret. 1 Pastikan Anda memiliki deret aritmetik. Deret aritmetik adalah deretan angka yang berurut dan memiliki selisih antarangka konstan. [1] Cara ini hanya dapat dipakai jika deret bilangan Anda adalah deret aritmetik. Untuk menentukan suatu deret adalah deret aritmetik, temukan selisih antara beberapa angka pertama dan beberapa angka terakhir. Selisih dari angka-angka dalam deret aritmetik selalu sama. Sebagai contoh, deret 10, 15, 20, 25, 30 adalah deret aritmetik karena selisih antara setiap sukunya konstan 5. 2 Tentukan banyaknya suku dalam deret. Jika deret hanya memiliki beberapa suku, Anda bisa langsung menghitungnya. Namun, jika Anda mengetahui suku pertama, suku terakhir, dan besar selisih yang sama selisih di antara setiap suku, Anda bisa menggunakan rumus untuk menemukan banyaknya suku. Angka ini akan diwakili oleh variabel . Sebagai contoh, jika Anda menghitung jumlah deret 10, 15, 20, 25, 30, karena ada 5 suku di deret tersebut. 3 Tentukan suku pertama dan terakhir dalam deret. Anda perlu mengetahui angka-angka ini untuk dapat menemukan jumlah deret aritmetik. Biasanya, suku pertama deret adalah 1, tetapi tidak selalu. Suku pertama deret akan diwakilkan variabel dan suku terakhir deret diwakili oleh variabel . Iklan 1 Siapkan rumus untuk menemukan jumlah deret aritmetik. Rumusnya adalah , yaitu sama dengan jumlah deret aritmetik. [2] Perhatikan bahwa rumus ini menunjukkan bahwa jumlah deret aritmetik adalah sama dengan rata-rata suku pertama dan terakhir, dikalikan dengan banyak suku.[3] 2 3 Hitung rata-rata suku pertama dan kedua. Caranya, jumlahkan kedua angka tersebut dan bagi dengan 2. 4 Kalikan rata-rata dengan jumlah suku di dalam deret. Anda akan memperoleh jumlah deret aritmetik. Iklan 1 Cari jumlah deret angka 1 sampai 500. Pertimbangkan semua bilangan bulat yang berurutan. 2 Cari jumlah deret aritmetik yang memiliki suku pertama 3 dan suku terakhir 24, serta selisih yang sama sebesar 7. 3 Selesaikan soal berikut. Mara menabung di minggu pertama tahun ini. Dia meningkatkan tabungan mingguannya sebanyak sepanjang tahun. Berapa jumlah tabungan Mara di akhir tahun? Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?
Diketahuibarisan bilangan 4, 8, 16, 32, 64. Tentukan suku ke-2 (U 2) dan suku ke-4 (U 4) ! Jawab : U 2 = suku ke-2 = 8 U 4 = suku ke-4 = 32 Suku ke-n (U n) dari suatu barisan bilangan dapat ditentukan apabila telah diketahui paling sedikit tiga buah suku. Contoh : Tentukan suku ke-n dari barisan bilangan 9, 14, 19, 24, !
– Apa itu n dalam aritmatika? n adalah nilai yang menunjukkan banyaknya suku barisan deret aritmatika. n memiliki nilai berupa bilangan real seperti 1, 2, 3, 4, 5, dan seterusnya. Nilai n sama dengan 1 menunjukkan suku pertama deret aritmatika. Nilai n bisa ditentukan melalui rumus umum suku ke-n deret aritmatika jika nilai suku ke-n, beda, dan juga suku pertama diketahui. Un = a + n-1 bUn suku ke n n = 1, 2, 3, … a suku pertama U1n bilangan real n – 1, 2, 3, … b beda deret aritmatika Untuk lebih memahami tentang nilai n, berikut contoh soal menentukan nilai n pada deret aritmatika beserta pembahasannya! Baca juga Rumus Jumlah Suku ke-n Barisan Aritmatika Contoh soal Suku ke-6 suatu barisan aritmatika adalah dan suku ke-10 adalah Supaya suku ke-n sama dengan 0, maka nilai n adalah … JawabanU6 = = = 0 Dilansir dari Math is Fun, deret aritmatika adalah barisan angka dengan beda antara satu suku dan suku berikutnya adalah sama. Sehingga, untuk menjawab soal tersebut terlebih dahulu kita harus mencari beda deret tersebut menggunakan rumus umum suku ke-n. Mencari beda deret aritmatika U6 = a + 6-1 b = a + 5b = … persamaan 1U10 = a + 10-1 b = a + 9b = … persamaan 2 Baca juga Menentukan Rumus Suku ke-n Barisan Aritmatika Eliminasi kedua persamaan tersebut untuk menghilangkan nilai a dan mendapatkan nilai b a + 5b = + 9b =

ο»ΏOkeselisihnya 2 ya berarti apabila 4 berarti sini dari + 1 + 2 apabila di sini u5 berarti + 1 + 2 + 3 sampai 3 aja. Berarti kalau di sini u-20 berarti ini dari + 1 + 2 + hingga mas 1818 karena di sini selisihnya 2 ya ini 5 di sini sampai 3 aja sampai 2. Oke seperti itu jadi disini kita tulis satunya yau satunya itu yang akan satunya satu

403 ERROR Request blocked. We can't connect to the server for this app or website at this time. There might be too much traffic or a configuration error. Try again later, or contact the app or website owner. If you provide content to customers through CloudFront, you can find steps to troubleshoot and help prevent this error by reviewing the CloudFront documentation. Generated by cloudfront CloudFront Request ID 1OnrB00FLuBN0rEYdtAmLTMpefRM95WLRwyS3cGwN2zCa1H8ye0Q0g==
Menemukanjumlah suku dalam deret aritmetik mungkin terdengar menakutkan, tetapi sebenarnya cukup sederhana. Anda hanya perlu memasukkan angka ke rumus U n = a + (n - 1) b dan mencari nilai n, yang merupakan jumlah suku.Ketahui bahwa U n adalah angka terakhir dalam deret, a adalah suku pertama dalam deret, dan b adalah beda atau selisih antarsuku bersebelahan.

26 Views Menentukan Suku ke-tepi langit Un Kalau Bilang Suku Diketahui. Kaki ke-4 dan tungkai ke-9 satu barisan aritmatika berturut-ikut adalah 110 dan 150. Suku ke-30 barisan tersebut adalah … A. 308 B. 318 C. 326 D. 344 E. 354 Pembahasan Bersumber beberapa tungkai yang diketahui diperoleh persamaan ialah 1 U4 = a + 3b = 110 2 U9 = a + 8b = 150 Dengan dua persamaan di atas, kita dapat menentukan nilai suku mula-mula a dan beda b armada aritmatika tersebut. Nilai a dan b dapat ditentukan dengan metode peminggiran atau metode substitusi. Dengan metode substitusi, diperoleh a + 3b = 110 β†’ a = 110 – 3b β†’ substitusi ke persamaan 2. a + 8b = 150 β‡’ 110 – 3b + 8b = 150 β‡’ 110 + 5b = 150 β‡’ 5b = 40 β‡’ b = 8 Karena b = 8, maka a = 110 – 38 = 110 – 24 = 86. Kaprikornus, suku ke-30 angkatan aritmatika tersebut adalah U30 = a + 29b β‡’ U30 = 86 + 298 β‡’ U30 = 86 + 232 β‡’ U30 = 318 Opsi B Dari suatu tentara aritmatika diketahui tungkai ke-5 adalah 22 dan tungkai ke-12 merupakan 57. Suku ke-15 angkatan ini adalah … A. 62 B. 68 C. 72 D. 74 E. 76 Pembahasan Dari pertanyaan diperoleh dua persamaan perumpamaan berikut 1 U5 = a + 4b = 22 2 U12 = a + 11b = 57 Dengan menunggangi metode substitusi, diperoleh poin suku mula-mula dan beda ibarat berikut a + 4b = 22 β†’ a = 22 – 4b β†’ substitusi ke paralelisme 2. a + 11b = 57 β‡’ 22 – 4b +11b = 57 β‡’ 22 + 7b = 57 β‡’ 7b = 35 β‡’ b = 5 Karena b = 5, maka a = 22 – 45 = 22 – 20 = 2. Makara, suku ke-15 barisan aritmatika tersebut adalah U15 = a + 14b β‡’ U15 = 2 + 145 β‡’ U15 = 2 + 70 β‡’ U15 = 72 Opsi C Tungkai keempat dan suku ketujuh satu barisan aritmatika berturut-ikut yakni 17 dan 29. Suku armada ke-25 adalah … A. 97 B. 101 C. 105 D. 109 E. 113 Pembahasan Dari cak bertanya diperoleh dua persamaan sebagai berikut 1 U4 = a + 3b = 17 2 U7 = a + 6b = 29 Dengan memperalat metode substitusi, diperoleh kredit suku permulaan dan cedera sebagai berikut a + 3b = 17 β†’ a = 17 – 3b β†’ substitusi ke persamaan 2. a + 6b = 29 β‡’ 17 – 3b + 6b = 29 β‡’ 17 + 3b = 29 β‡’ 3b = 12 β‡’ b = 4 Karena b = 4, maka a = 17 – 34 = 17 – 12 = 5. Jadi, suku ke-25 tentara aritmatika tersebut ialah U25 = a + 24b β‡’ U25 = 5 + 244 β‡’ U25 = 5 + 96 β‡’ U25 = 101 Opsi B Suku kedua pasukan aritmatika adalah 5 dan kaki kelima adalah 14. Kaki ke-20 armada aritmatika tersebut adalah … A. 59 B. 62 C. 63 D. 65 E. 68 Pembahasan Dari soal diperoleh dua persamaan sebagai berikut 1 U2 = a + b = 5 2 U5 = a + 4b = 14 Dengan memperalat metode substitusi, diperoleh nilai kaki permulaan dan beda bagaikan berikut a + b = 5 β†’ a = 5 – b β†’ substitusi ke persamaan 2. a + 4b = 14 β‡’ 5 – b + 4b = 14 β‡’ 5 + 3b = 14 β‡’ 3b = 9 β‡’ b = 3 Karena b = 3, maka a = 5 – 3 = 2. Makara, suku ke-20 bala aritmatika tersebut adalah U20 = a + 19b β‡’ U20 = 2 + 193 β‡’ U20 = 2 + 57 β‡’ U20 = 59 Opsi A Terbit suatu barisan aritmatika diketahui suku keempat merupakan 7 dan kuantitas suku keenam dan kedelapan adalah 23. Osean suku kedua puluh adalah … A. 21 B. 20 C. 31 D. 41 E. 60 Pembahasan Dari soal diperoleh dua persamaan sebagai berikut 1 U4 = a + 3b = 7 2 U6 + U8 = a + 5b + a + 7b = 2a + 12b = 23 Dengan menggunakan metode substitusi, diperoleh nilai suku permulaan dan cedera sebagai berikut a + 3b = 7 β†’ a = 7 – 3b β†’ substitusi ke paralelisme 2. 2a + 12b = 23 β‡’ 27 – 3b + 12b = 23 β‡’ 14 – 6b + 12b = 23 β‡’ 6b = 9 β‡’ b = 9/6 = 3/2 Karena b = 3/2, maka a = 7 – 33/2 = 14 – 9/2 = 5/2. Jadi, tungkai ke-20 armada aritmatika tersebut yaitu U20 = a + 19b β‡’ U20 = 5/2 + 193/2 β‡’ U20 = 5/2 + 57/2 β‡’ U20 = 62/2 = 31 Opsi C Menentukan Suku ke-falak jika Jumlah Sejumlah Suku Diketahui Privat satu laskar aritmatika, jikalau U3 + U7 = 56 dan U6 + U10 = 86 , maka tungkai ke-2 barisan aritmatika tersebut sama dengan … A. 13 B. 16 C. 20 D. 24 E. 28 Pembahasan Dari soal diperoleh dua persamaan sebagai berikut U3 + U7 = 56 β‡’ a + 2b + a + 6b = 56 β‡’ 2a + 8b = 56 β‡’ a + 4b = 28. U6 + U10 = 86 β‡’ a + 5b + a + 9b = 86 β‡’ 2a + 14b = 86 β‡’ a + 7b = 43. Bersumber dua persamaan di atas, nilai a dan b bisa dihitung dengan menggunakan metode substitusi bagaikan berikut a + 4b = 28 β†’ a = 28 – 4b β†’ substitusi ke persamaan 2. β‡’ a + 7b = 43 β‡’ 28 – 4b + 7b = 43 β‡’ 28 + 3b = 43 β‡’ 3b = 15 β‡’ b = 5 Karena b = 5, maka a = 28 – 45 = 28 – 20 = 8. Jadi, kaki ke-2 laskar aritmatika tersebut adalah U2 = a + b β‡’ U2 = 8 + 5 β‡’ U2 = 13 Opsi A Diketahui U2 + U4 = 12 dan U3 + U5 = 16, maka suku ke-7 barisan itu ialah … A. 30 B. 28 C. 22 D. 18 E. 14 Pembahasan Bermula pertanyaan diperoleh dua persamaan sebagai berikut 1 U2 + U4 = 12 β‡’ a + b + a + 3b = 12 β‡’2 a + 4b = 12 β‡’ a + 2b = 6. 2 U3 + U5 = 16 β‡’ a + 2b + a + 4b = 16 β‡’ 2a + 6b = 16 β‡’ a + 3b = 8. Dari dua persamaan di atas, nilai a dan b dapat dihitung dengan menggunakan metode substitusi andai berikut a + 2b = 6 β†’ a = 6 – 2b β†’ substitusi ke persamaan 2. a + 3b = 8 β‡’ 6 – 2b + 3b = 8 β‡’ 6 + b = 8 β‡’ b = 2 Karena b = 2, maka a = 6 – 22 = 6 – 4 = 2. Jadi, suku pertama barisan itu adalah 2 dan kaki ke-7 armada aritmatika tersebut yakni U7 = a + 6b β‡’ U7 = 2 + 62 β‡’ U7 = 14 Opsi E Diketahui barisan aritmatika dengan U1 + U10 + U19 = 96. Suku ke-10 legiun tersebut sama dengan … A. 22 B. 27 C. 32 D. 37 E. 42 Pembahasan Dari soal diperoleh pertepatan bagaikan berikut U1 + U10 + U19 = 96 β‡’ a + a + 9b + a + 18b = 96 β‡’ 3a + 27b = 96 β‡’ a + 9b = 32 Suku ke-10 barisan aritmatika tersebut yaitu U10 = a + 9b β‡’ U10 = a + 9b = 32 Opsi C Takdirnya U2 + U15 + U40 = 165, maka kaki ke-19 barisan aritmatika tersebut adalah … A. 10 B. 19 C. 28,5 D. 55 E. 82,5 Pembahasan Dari soal diperoleh persamaan sebagai berikut U2 + U15 + U40 = 165 β‡’ a + b + a + 14b + a + 39 b = 165 β‡’ 3a + 54b = 165 β‡’ a + 18b = 55 Suku ke-19 pasukan aritmatika tersebut merupakan U19 = a + 18b β‡’ U19 = 55 opsi D. 5. Diketahui barisan aritmatika dengan U2 + U5 + U20 = 54. Tungkai ke-9 barisan tersebut adalah… A. 16 B. 17 C. 18 D. 19 E. 20 Pembahasan Puas dasarnya, kerjakan berbuat tanya seperti ini yang teristiadat kita buat yakni mencari nilai tungkai pertama a dan beda legiun b. Akan cuma, plong sebagian soal kita lain dapat menentukan nilai a dan b sehingga yang harus kita bikin yaitu melihat perhubungan antara persamaan yang ditanya dengan persamaan yang diketahui. Dari cak bertanya diperoleh persamaan U2 + U5 + U8 = 54 β‡’ a + b + a + 4b + a + 19b = 54 β‡’ 3a + 24b = 54 β‡’ a + 8b = 18 Rumus untuk cak menjumlah suku ke-9 yakni sebagai berikut U9 = a + 8b β‡’ U9 = a + 8b = 18 opsi C source Source

Samaseperti penentuan suku barisan, cara menentukan banyak suku juga tergantung pada kondisi yang diberikan dalam soal. Kondisi yang umum antaralain menentukan jumlah suku jika suku pertama, suku tengah, dan suku terakhir diketahui. Misalnya jika suku terakhir barisan aritmatika adalah suku ke-20, maka banyak suku dalam barisan tersebut Unduh PDF Unduh PDF Deret aritmetika adalah rangkaian angka-angka yang selisih antara satu angka dengan angka di sebelahnya selalu sama. Sebagai contoh, rangkaian angka-angka genap … adalah deret aritmetika karena selisih satu angka dengan angka berikutnya selalu 2. Jika Anda mengerjakan soal deret aritmetika, mungkin Anda diminta mencari nilai suku kosong di dalam deret. Terakhir, jika Anda ingin mencari suku di urutan tertentu dengan cepat, misalnya suku ke-100, bacalah panduan di bawah ini untuk mempelajarinya. 1 Temukan beda suku deret aritmetika. Ketika menyajikan deretan angka, mungkin soal memberi tahu bahwa deretan tersebut adalah deret aritmetika, atau Anda perlu mencarinya sendiri. Langkah pertama yang perlu Anda lakukan selalu sama, yaitu mencari selisih dua angka pertama dalam deret. Hasilnya adalah beda suku dari deret aritmetika soal Anda.[1] 2 Periksa konsistensi beda suku. Menemukan selisih dari dua suku pertama saja belum cukup. Anda harus memastikan selisih tersebut sama untuk seluruh angka-angka di deret aritmetika Anda. Cek selisih deret dengan mengurangi dua suku yang bersebelahan. Apabila hasilnya sama dengan selisih dua angka pertama, kemungkinan besar soal tersebut adalah deret aritmetika. 3 Jumlahkan beda suku dengan suku terakhir dalam soal. Setelah mengetahui besarnya beda suku, Anda dapat melanjutkan deret aritmetika dengan mudah. Cukup jumlahkan suku terakhir yang diketahui dalam deret dengan beda suku yang diperoleh. Iklan 1 Pastikan rangkaian angka-angka adalah deret aritmetika. Terkadang, soal memberikan deret angka yang disisipi suku kosong. Pertama-tama, Anda harus memastikan bahwa rangkaian angka-angka yang diberikan adalah deret aritmetika. Pilih dua suku yang bersebelahan dan cari selisihnya. Setelah itu, pilih dua angka bersebelahan yang lain dan cari selisihnya. Jika kedua selisih tersebut sama, kemungkinan soal Anda adalah deret aritmetika. 2 Jumlahkan beda suku dengan angka sebelum suku kosong. Langkah ini kurang lebih mirip dengan cara mencari suku di ujung deret. Anggaplah suku kosong sebagai suku terakhir dalam deret. Untuk menemukan angka di suku kosong, Anda perlu menjumlahkan beda suku dengan angka sebelum suku kosong terkait. 3 Kurangi angka setelah suku kosong dengan beda suku. Untuk memastikan jawaban yang Anda peroleh sudah benar, coba cek dari arah sebaliknya. Jika beda suku deret dari arah kiri ke kanan adalah +4, artinya beda suku deret dari arah kanan ke kiri adalah -4. 4 Bandingkan kedua hasilnya. Hasil dari penjumlahan angka di sebelah kiri suku kosong dan pengurangan dari angka di sebelah kanan suku kosong harus sama. Kalau sama, artinya Anda sudah memperoleh jawaban yang benar. Kalau tidak, periksa kembali pekerjaan Anda. Mungkin, rangkaian angka-angka Anda bukanlah deret aritmetika. Iklan 1 Ketahui suku pertama dari deret aritmetika. Tidak semua deret dimulai dari angka 0 atau 1. Lihat rangkaian angka-angka Anda untuk menentukan suku pertama. Inilah titik awal Anda, yang ditandai dengan variabel a1. 2Nyatakan beda suku deret dengan variabel b beda. Carilah beda suku deret, seperti sebelumnya. Dalam contoh di atas, beda suku deret adalah sama dengan 5. Cek juga apakah selisih dua suku lain yang bersebelahan sama dengan 5. Kemudian, ganti beda suku deret dengan variabel b. 3 Gunakan rumus eksplisit. Rumus eksplisit adalah persamaan aljabar yang digunakan untuk mencari suku berapa pun di deret aritmetika tanpa harus menuliskan deret secara lengkap. Rumus eksplisit deret aritmetika adalah . Suku an dapat dibaca sebagai β€œsuku ke-n dari a,” ketika variabel n mewakili urutan suku dalam deret, dan an adalah nilai aktual dari suku tersebut. Sebagai contoh, jika soal meminta Anda mencari suku ke-100 dari suatu deret aritmetika, berarti n adalah 100. Perlu dicatat bahwa dalam contoh ini n adalah 100, tetapi an adalah nilai di suku ke-100 tersebut, dan bukan angka 100 itu sendiri. 4 Masukkan informasi untuk menyesaikan soal. Gunakan rumus eksplisit untuk menyelesaikan deret Anda. Isi informasi yang Anda ketahui untuk menemukan nilai suku yang dicari. Iklan 1 Susun ulang rumus eksplisit untuk menyelesaikan variabel lain. Gunakan rumus eksplisit dan aljabar dasar untuk menemukan berbagai informasi terkait deret aritmetika. Bentuk dasar rumus eksplisit adalah , yang dirancang untuk menemukan nilai an. Namun, Anda dapat mengatur ulang rumus ini untuk menemukan variabel yang lain. 2 Cari suku pertama deret aritmetika. Mungkin soal memberikan informasi bahwa suku ke-50 dari deret aritmetika adalah 300, dan setiap suku bertambah sebanyak 7 beda suku. Soal meminta Anda untuk menemukan suku pertama deret tersebut. Gunakan rumus eksplisit yang telah disesuaikan untuk mencari a1 dan memperoleh jawaban. Gunakan persamaan , dan masukkan informasi yang diberikan. Oleh karena suku ke-50 adalah 300, artinya n=50, n-1=49 dan an=300. Anda juga mengetahui bahwa beda suku b deret adalah 7. Dengan demikian, rumus eksplisit lengkap Anda adalah dan diperoleh . Deret aritmetika dimulai dari angka 43 dan terus bertambah sebanyak 7. Oleh karenanya, deret aritmetika Anda adalah 43,50,57,64,71,78…293,300. 3 Cari panjang deret angka. Misalnya, soal memberikan nilai suku pertama dan terakhir suatu deret, dan meminta Anda mencari banyaknya suku dalam deret tersebut. Gunakan rumus yang telah disusun ulang . Iklan Peringatan Ada berbagai jenis deretan angka. Jangan langsung berasumsi bahwa suatu rangkaian angka-angka adalah deret aritmetika. Selalu awali perhitungan dengan mencari selisih dari setidaknya dua pasang suku yang bersebelahan kalau bisa tiga atau empat untuk menemukan beda suku deret tersebut. Iklan Jangan lupa, variabel b bisa berupa angka positif maupun negatif, tergantung apakah Anda menjumlahkan atau mengurangkan beda suku. Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda? KetikaAnda diminta mencari suku ke-20, maka gantikan angka 20 pada bilangan n dari rumus yang Anda dapatkan tadi. Gantikan dengan bilangan lain sesuai dengan nilai n dalam soal. Selanjutnya, jika teman-teman diminta untuk mencari nilai beda dan suku pertama dari sebuah rumus suku ke-n barisan aritmatika, maka langkahnya adalah: Artikel ini membahas tentang rumus suku ke n. Pelajari cara menghitung rumus rumus suku ke n disertai dengan contoh soal dan pembahasannya. Rumus suku ke n cara nyarinya gimana sih? Gampang banget temen-temen, tapi sebelum ngejawab pertanyaan kalian, sebenernya kalian lagi nyari suku ke n barisan aritmatika atau barisan geometri nih? Harus dipastiin dulu ya guys, biar jawabannya juga bener. Jangan sampe lu udah cape-cape ngitung ternyata lu pake rumus suku ke n yang salah jenis barisannya… Rugi waktu, energi dan kesehatan mental nanti. Jadi rumus kita bakalan belajari rumus suku ke-n barisan aritmatika dan geometri, dibaca sampai habis ya artikelnya! Sebelum kita lompat ke rumus gua ada sedikit cerita menarik yang mau gua share. Salah satu matematikawan terkenal di dunia, Carl Friedrich Gauss dikenal berbakat dari kecil. Cerita yang paling terkenalnya itu, suatu ketika saat Gauss masih SD, gurunya minta kelasnya untuk menjumlahkan semua angka dari 1 sampai 100. Guru itu terkejut karena Gauss abis mikir berapa saat langsung menulis jawabannya, yaitu 5050. Dok Depositphotos Nah guys, rahasia Gauss itu terletak di otak penuh aritmatika dia. Tentu aja nama kita bukan Gauss, tapi semoga dari rumus suku ke n yang kita bakalan pelajarin kali ini, lu pada bisa jadi lebih pinter kaya Gauss ye! Rumus Suku ke n Barisan AritmatikaRumus Suku ke n Barisan GeometriContoh Soal dan Pembahasan Oke pertama-tama kita bakalan bahas tentang rumus suku ke n dari barisan aritmatika. Singkat cerita aja, barisan aritmatika ini adalah baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui penjumlahan atau pengurangan dengan suatu bilangan. Berikut gua cantumin nih rumus suku ke n barisan aritmatika. Un = a + n – 1 b Simbol Un di sini mewakilkan suku ke n, sementara simbol a mewakilkan suku pertama atau awal dari barisan aritmatika. Simbol b ini ngewakilin selisih dari nilai suku-suku yang berdekatan. Gua mau kasih tips lagi nih buat lebih gampangin rumus suku ke n yang barusan gua kasih. Un = a + n – 1 b Un = a + bn – b Un = bn + a – b Rumus manapun yang temen-temen pilih buat pakai bakalan ngehasilin jawaban yang sama ya! Yang barusan gua kasih biar lebih cepet aja lu pada nyarinya kok. Biar pada yakin nih gua kasih contoh dulu sedikit Barisan Aritmatika 5, 9, 13, 17, … Pakai rumus yang pertama gua kasih Un = a + n – 1 b Un = 5 + n – 1 4 Un = 5 + 4n – 1 Un = 4n + 1 Pakai rumus yang kedua gua kasih Un = bn + a – b Un = 4n + 5 – 4 Un = 4n + 1 Rumus Suku ke n Barisan Geometri Sekarang kita loncat ke rumus suku ke n di barisan geometri. Barisan geometri ini adalah baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui perkalian dengan suatu bilangan. Intinya ya aritmatika berselisih penambahan dan pengurangan, sementara barisan geometri melalui perkalian. Rumusnya juga sedikit berbeda nih guys, yaitu Simbol-simbol di sini sama aja guys seperti penjelasan yang di rumus suku ke n barisan aritmatika sebelumnya. Yang baru itu adalah simbol r yang melambangkan perbandingan atau rasio antara nilai suku-suku yang berdekatan selalu sama. Sekarang kita harus ngitung berhubungan dengan perkalian. Karena hampir mirip gua kasih contoh lagi aja ya biar enak mahaminnya. Barisan Geometri 3, 6, 12, 24, … Un = arn-1 Un = 3 x 2n-1 Contoh Soal dan Pembahasan Contoh Soal 1 Apa rumus suku ke-n dari barisan 6, 10, 14, 18, … ? Pembahasan Diketahui a = 6 b = 4 Ditanya Un Jawab Un = a + n – 1 b Un = 6 + n – 1 4 Un = 6 + 4n – 4 Un = 4n + 2 Jadi rumus suku ke n pada barisan ini adalah 4n + 2 Contoh Soal 2 Diketahui barisan geometri 2, 6, 18, …. Berapakah nilai suku ke-6? Pembahasan Diketahui a = 2 r = 3 Ditanya U6 Jawab U6 = U6 = U6 = 2 x 243 U6 = 486 Jadi nilai suku ke-6 pada barisan geometri tersebut adalah 486 Contoh Soal 3 Terdapat barisan aritmatika 12, 5, -2, -9, … Berapakah nilai suku ke-7 pada barisan tersebut? Pembahasan Diketahui a = 12 b = -7 Ditanya U7 Jawab U7 = bn + a – b U7 = -49 + 19 U7 = -30 Jadi nilai suku ke-7 pada barisan aritmatika tersebut adalah -30 Jadi temen-temen, itulah cara mencari rumus suku ke n dengan gampang yang bisa kalian manfaatin untuk ngerjain soal ujian matematika! Gimana pendapat kalian? Gampang banget, gampang aja atau cukup sulit nih? Jangan lupa tuliskan pikiran kalian di komentar ya! Untuk yang masih pada ambis dan mau belajar lebih banyak dari Zenius, bisa banget dicek materi-materi berikut ini yang masih berhubungan ke baris-berbaris! Materi – Baris dan Deret Barisan dan Deret Geometri Rumus, Contoh Soal, dan Pembahasan Lengkap Barisan dan Deret Aritmatika Rumus, Contoh Soal dan Pembahasan Lengkap Nah, nggak cuma Matematika, elo juga bisa mempelajari mata pelajaran lainnya dengan berlangganan paket belajar Zenius! Klik gambar di bawah ini ya untuk pengalaman belajar yang lebih asik! Download Aplikasi Zenius Tingkatin hasil belajar lewat kumpulan video materi dan ribuan contoh soal di Zenius. Maksimaln persiapanmu sekarang juga! b= -7. Ditanya: U7. Jawab: U7 = bn + (a - b) U7 = -49 + 19. U7 = -30. Jadi nilai suku ke-7 pada barisan aritmatika tersebut adalah -30. Jadi temen-temen, itulah cara mencari rumus suku ke n dengan gampang yang bisa kalian manfaatin untuk ngerjain soal ujian matematika! Hai Quipperian, jika kamu diminta untuk menentukan suku ke-n pada barisan, rumus apa yang akan kamu gunakan? Misalnya nih, barisan ke-1 32, 16, 8, 4, 2, …, …, …, barisan ke-2 10, 7, 4, 1, …, …. Untuk mencari suku ke-18 dari kedua barisan tersebut, apakah rumusnya sama? Ternyata tidak ya. Jika diperhatikan dari polanya, barisan ke-1 termasuk barisan geometri. Sementara itu, barisan ke-2 termasuk barisan aritmatika. Nilai suku ke-18 pada kedua barisan bisa kamu cari menggunakan rumus suku ke-n barisan aritmatika dan geometri. Apa yang dimaksud suku ke-n? Yuk, simak selengkapnya! Rumus Suku ke-n Rumus suku ke-n adalah rumus yang digunakan untuk menentukan nilai suku ke-n pada suatu barisan, baik barisan aritmatika maupun barisan geometri. Suku ke-n biasa dilambangkan sebagai Un. Sekadar informasi nih Quipperian, untuk menentukan suku ke-n sebenarnya tidak perlu rumus khusus. Asalkan polanya diketahui, siapapun bisa dengan mudah menentukan sukunya. Masalahnya, jika pola sudah diketahui lalu suku yang dicari termasuk suku dengan posisi cukup besar, misalnya n = 30, pasti akan terasa lama dan membuang-buang waktu. Itulah mengapa, diperlukan suatu rumus tertentu untuk memudahkan perhitungan. Jika sukunya masih berada di posisi awal perhitungan, tentulah mudah untuk menyelesaikan tanpa rumus tertentu. Misalnya diketahui barisan, 3, 5, 7, 9, 11, 13, 15, …, …. Nah, dua suku yang rumpang itu kira-kira berapa? Pasti kamu bisa dengan mudah menjawabnya tanpa perlu rumus, kan? Jawabannya, 17 dan 19. Apa Rumus Suku ke-n Barisan Aritmatika Rumus suku ke-n barisan aritmatika adalah rumus yang digunakan untuk menentukan nilai suku pada barisan aritmatika. Seperti Quipperian ketahui bahwa barisan aritmatika adalah barisan bilangan dengan selisih yang selalu tetap. Secara matematis, rumus mencari suku ke-n barisan aritmatika dinyatakan sebagai berikut. Dengan ketentuan Un = suku ke-n; a = suku pertama barisan aritmatika U1; n = posisi suku yang dicari; dan b = selisih antara suku ke-n dan suku ke-n – 1. Apa Rumus Suku ke-n Barisan Geometri Rumus suku ke-n barisan geometri adalah rumus yang digunakan untuk menentukan nilai suku pada barisan geometri. Tahukah kamu apa yang dimaksud barisan geometri? Barisan geometri adalah barisan bilangan dengan perbandingan atau rasio tetap. Secara matematis, rumus suku ke-n barisan geometri dinyatakan sebagai berikut. Dengan ketentuan Un = suku ke-n; a = suku pertama barisan geometri atau U1; n = letak suku yang dicari; dan r = rasio atau perbandingan antara Un+1 dan Un. Cara Menghitung Suku ke-n Setelah tahu rumusnya, lalu bagaimana cara menghitung suku ke-n, baik pada barisan aritmatika maupun barisan geometri? Cara Menghitung Suku ke-n Barisan Aritmatika Untuk menghitung suku ke-n barisan aritmatika, langkah pertama kamu harus mengidentifikasi dahulu, apakah barisan yang dimaksud benar barisan aritmatika atau tidak. Jika benar, tentukan selisihnya. Setelah selisih dan suku pertama diketahui, substitusikan ke dalam rumus. Perhatikan contoh berikut. 10, 7, 4, 1, -2, -5, -8, …., …. Kira-kira, berapakah nilai suku ke-18? Mula-mula, tentukah selisih dan suku pertamanya. b = 7 – 10 = -3 U1 = a = 10 Dengan demikian, suku ke-18 bisa dinyatakan seperti berikut. Jadi, suku ke-18nya adalah -41. Cara Menghitung Suku ke-n Barisan Geometri Untuk menghitung suku ke-n barisan geometri, langkah pertamanya adalah lakukan identifikasi untuk memastikan bahwa barisan tersebut termasuk barisan geometri. Jika benar, tentukan rasio atau perbandingan antarsukunya. Perhatikan contoh berikut. 32, 16, 8, 4, 2, 1, …, … Dari barisan di atas, kira-kira berapakah suku ke-25? Mula-mula, tentukan dahulu rasionya. Dengan demikian, suku ke-15 adalah sebagai berikut. Hasilnya sungguh fantastis, kan? Kalau kamu hitung secara manual, pasti lelah dengan sendirinya. Perbedaan Rumus Suku ke-n Barisan Aritmatika dan Geometri Perbedaan rumus suku ke-n pada barisan aritmatika dan geometri terletak pada ciri barisannya. Jika barisannya termasuk aritmatika, maka besaran yang berpengaruh adalah selisih antarsuku. Jika barisannya termasuk geometri, besaran yang berpengaruh adalah rasio antarsuku. Contoh Soal Rumus Suku ke-n Setelah mengetahui apa itu rumus suku ke-n, yuk asah kemampuanmu dengan contoh soal berikut. Contoh soal 1 Diketahui suku ke-3 barisan aritmatika adalah 18. Sementara itu, suku ke-7 adalah 38. Berapakah suku pertamanya? Pembahasan Cara mencari suku pertama barisan aritmatika seperti pada soal adalah sebagai berikut. U3 = 18 U7 = 38 Dengan demikian Lakukan eliminasi pada persamaan 1 dan 2. Oleh karena a = U1, maka suku pertama barisan tersebut adalah 4. Jadi, suku pertama barisan tersebut adalah 4. Contoh soal 2 Dalam rangka memperingati Hari Kemerdekaan RI, SMA Harapan Jaya menggelar upacara bendera di halaman sekolah. Susunan obade diatur sedemikian sehingga lebih menarik untuk dipandang. Barisan pertama diisi oleh 5 siswa, barisan kedua diisi oleh 2 siswa lebihnya dari barisan pertama, barisan ketiga diisi oleh 2 siswa lebihnya dari barisan ketiga, dan seterusnya. Berapakah perbandingan antara banyaknya siswa di baris pertama dan keenam? Pembahasan Diketahui a = U1 = 5 b = 2 Ditanya U1 U6 =…? Jawab Untuk mencari perbandingan antara U1 U6, gunakan persamaan berikut. Jadi, perbandingan antara banyaknya siswa di baris pertama dan keenam adalah 1 3. Contoh soal 3 Perhatikan barisan geometri berikut. Tentukan perbandingan antara suku ke-10 dan 12! Pembahasan Dari barisan tersebut, diketahui rasio, r = 4 dan a = 1/16. Dengan demikian Jadi, perbandingan antara suku ke-10 dan suku ke-12 adalah 1 16. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper! .
  • 1ia5bvw3yf.pages.dev/236
  • 1ia5bvw3yf.pages.dev/694
  • 1ia5bvw3yf.pages.dev/269
  • 1ia5bvw3yf.pages.dev/840
  • 1ia5bvw3yf.pages.dev/744
  • 1ia5bvw3yf.pages.dev/361
  • 1ia5bvw3yf.pages.dev/771
  • 1ia5bvw3yf.pages.dev/602
  • 1ia5bvw3yf.pages.dev/913
  • 1ia5bvw3yf.pages.dev/887
  • 1ia5bvw3yf.pages.dev/713
  • 1ia5bvw3yf.pages.dev/364
  • 1ia5bvw3yf.pages.dev/658
  • 1ia5bvw3yf.pages.dev/897
  • 1ia5bvw3yf.pages.dev/986
  • cara mencari suku ke 20